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Abstract. Shorter market cycles and growing competition require professional 

product life-cycle cost management for manufacturing companies. During a co-

innovation workshop at SAP SE, we analyzed product-cost optimization applied 

by discrete manufacturers to identify corresponding deficits and requirements of 

product costing. We identified a significant lack of software support regarding 

cost optimization, especially in the early phases of the product life cycle. To 

improve information system support during early phases of product life cycle, 

this paper points out a new field of application for recommender systems. In 

detail, we compile the concept of a ready-to-use recommender system that aims 

at the improvement of product life-cycle cost management. This concept 

complements the expertise of experts by recommending how to further optimize 

product costs. 

Keywords: Product life-cycle cost management, recommender systems, 

product-cost optimization, enterprise information systems 

1 Motivation 

Efficient cost management has become an indispensable success factor for the discrete 

manufacturing industry. One reason for the increased relevance of cost management is 

high competition in global markets in combination with shorter market cycles [1]. 

Companies need to sell their products at reasonable prices to ensure long-lasting 

economic success. Reasonable pricing is accomplished by optimal product costs 

(including such costs as development efforts, procurement costs and production costs) 

[2]. Therefore, the search for optimal product costs requires concepts that focus on the 

complete life cycle of a product from ideation to degeneration (Figure 1). Product life-

cycle cost management (PLCM) is such a product-related, modern cost management 

concept, which addresses the challenges and weak points of classical product costing 

[3]. PLCM considers costs along the life cycle of a product by considering incurred 

costs in combination with the estimation of committed costs for the upcoming product 

life cycle [4]. With PLCM, cost analyses are already performed before start of 
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production (SOP). This is important since almost 90% of the total product costs are 

committed before SOP (Figure 1) [3]. 

 

Figure 1. Cost reduction potential along product life cycle ([5], adapted from [6]) 

Although the product development phase is the most important phase to influence and, 

therefore, optimize product costs, early product-cost optimization seems to lack 

software support (Figure 1). While ERP systems support product costing for the market 

cycle, there seems to be potential for further software support during the product 

development cycle. In 2008, Schicker et al. [7] examined the status quo of PLCM in 

industry. In total, 91% of the participants requested improved information system 

support for product costing within product development [7]. 

Having identified this potential to improve information system support for early 

product-cost optimization in general, we joined a co-innovation development session 

at SAP SE. During this session, we gained insights into the current state of applied 

PLCM and its software support. As a result, we identified the need in industry to find 

software-supported solutions that assist costing experts in cost optimization to exploit 

optimization potentials of the product development cycle (Figure 1). 

As part of a long-term research project, which was introduced by Walter and Leyh 

in 2017 [5], we initiated the research on the application of recommender systems (RS) 

to improve information system support for PLCM and moreover, to enhance early 

product-cost optimization. We formulated the following research questions to structure 

our research into the potential of RS as a feature for product-costing software: 

1. What are essential domain-specific aspects and requirements for recommender 

systems to support product-cost optimization? 

2. What would a recommender system conception look like and which components as 

well as functionalities would be required? 

To answer these research questions, the paper is structured as follows: The next section 

provides a research background on recommender systems. Subsequently, we introduce 

our research methodology. Based on our findings, we derive domain-specific 
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requirements for RS in the context of PLCM. Furthermore, we elaborate core 

components of a potential RS in PLCM to draft a high-level architectural system 

concept to overcome hurdles of early product-cost optimization. The paper concludes 

with a summary of research results. 

2 Background on Recommender Systems 

Recommender systems are nowadays a ubiquitous part of the internet, well known to 

users of online services like Amazon or eBay. RS basically provide recommendations 

about items that the user may like to see [8]. Everybody is familiar with messages such 

as “Customers who bought this item also bought…” [9]. RS were created to help users 

orient themselves in the ever-increasing diversity of information, products and services 

available online. Recommendations for movies and videos (Netflix, YouTube), jobs 

(LinkedIn), or texts (GroupLens) are only minor subsets of existing scenarios [8, 10]. 

Methods for generating recommendations differ on the basis of the data analyzed 

[9]. One widespread approach of RS methodology is content-based filtering (CBF) [11, 

12]. CBF identifies items to recommend based on their attributes. It assumes that if 

somebody likes many items with similar attribute values, then he or she will also like 

other items with similar attributes [8]. Take, for example, the case of a user who bought 

several books from the genre “fantasy”. Based on this preference, a CBF system 

recommends other books from the same genre to this user. However, this approach can 

raise problems. A slightly different example could be that a user buys a printer. As 

people usually do not need multiple printers, recommending similar exemplars does not 

make any sense. Collaborative filtering (CF) is a method that overcomes this hurdle. 

CF assumes that if many people are interested in different items and some of those 

people are also interested in other items, then the rest of the people will also be 

interested in these other items [11, 12]. Recommendations in CF are mainly retrieved 

by analyzing users’ behavior and the comparison of user profiles [10]. Now, consider 

again the printer example. The CF system knows that other customers who bought a 

printer usually also buy ink cartridges and printer paper. With that community 

knowledge, the system can recommend such complementary items. 

The success of the two RS approaches mentioned above strongly depends on the 

amount of ratings. In both RS approaches, new users explicitly or implicitly need to 

rate at least a few items to identify the user’s preferences (new user problem). In CF, 

ratings for new items are also required as the system cannot sense their appropriateness 

among the user base otherwise (new item problem). Beyond that, deep knowledge about 

users’ preferences and constraints are not taken into consideration [13]. Hence, another 

approach was developed called knowledge-based (KB) RS that achieves better 

accuracy of predictions integrating specific domain knowledge about certain item 

features and a user’s specific requirements [8]. KB RS emphasizes the user’s situation 

and how recommendations can meet the particular need in that situation. Assessing the 

same knowledge sources as CBF and CF, KB RS takes further information into account 

(e.g., specific requirements of the user). Such additional information is typically 

retrieved by interacting with the user (e.g., interactive dialogs) [13]. For example, CB 

and CBF can hardly recommend items that are not bought frequently, whereas a  
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KB RS can do so. Consider the following use case. A user wants to buy an apartment. 

Through interaction with the user, a KB RS can request personal attributes (e.g., 

income, family status) and can thus generate a suitable recommendation based on these, 

whereas neither CBF nor CF would be able to provide reasonable recommendations 

due to lack of prior knowledge [12]. The knowledge needed to interact with the user 

must be engineered and then explicitly encoded into a formal and executable 

representation by domain experts. This initial process is called knowledge acquisition 

and represents a bottleneck when developing KB RS, as it demands a lot of effort [14]. 

Each of these RS approaches has its individual disadvantages (e.g., new user 

problems for CB and CBF, knowledge acquisition bottleneck for KB RS). Synthesizing 

single technologies to a hybrid recommender system is a widespread approach to 

achieve some synergy between them and, thus, reduce individual disadvantages [9]. 

3 Research Approach 

The purpose of this paper is to elaborate a RS concept for product-cost optimization 

during product development. It is necessary to consider industry’s state of the art to 

ensure problem relevance, as argued in Rosemann et al. [15] and Österle et al. [16]. At 

the same time, we wanted to confirm earlier research results from Schicker et al. [7] 

concerning a lack of domain-specific functionality within PLCM software. Such access 

to practical knowledge is important in the context of PLCM since product costing and 

its methods rely on expert knowledge (e.g., analogous cost-estimating techniques [17]) 

and, moreover, current research [18] has identified industrial practice as the most 

important source to learn about cost-optimization projects. 

We chose the discrete manufacturing industry as reference industry due to product 

complexity and, therefore, the need for extended cycles to develop products such as 

automobiles, airplanes, or special machinery [19]. To acquire knowledge concerning 

the reference industry, we were able to join a co-innovation session at SAP SE, where 

potential and current SAP customers discussed business concepts and software 

requirements for the on-going development of SAP Product Lifecycle Costing [20]. 

In order to gain insights into the status quo and identify problems with product-cost 

optimization across the discrete manufacturing industry, we hosted a workshop with 19 

experts (including 8 product controllers, 5 project controllers, and 4 information 

technology experts) from international companies from the automotive industry and the 

mechanical engineering industry [5]. The aim of this workshop was to capture tacit 

knowledge regarding the process of early product-cost optimization and to elaborate 

objectives to overcome drawbacks of today’s information systems [7]. 

In a first run, all participants with costing-related competences (i.e., product controllers 

and project controllers) answered the following questions among others [5]: 

1. How, when and why do you optimize product costs? 

2. What problems do you face when optimizing product costs (especially related to 

software support)? 

3. Where and to what end could the provision of dedicated recommendations improve 

the optimization of product costs? 

2022



The individual answers were presented to the other costing experts, before the main 

results were condensed into a joint summary. In the second run of the workshop, this 

summary was introduced to the whole group of experts, whereby every expert had a 

chance to challenge and discuss the group results. Industry insights and process deficits 

collected during this workshop were published in Walter and Leyh [5]. To further 

strengthen our understanding of the cost-optimization process and to elaborate use 

cases for optimization measures, we conducted a second study. This study contains an 

interview series followed by an evaluation with additional domain experts [21]. 

Based on this research results, we identified cost optimization use cases that offer 

potential to be supported by software-based approaches. These use cases have formed 

a foundation for our subsequent construction-oriented research approach. Taking 

elaborated use cases and requirements into consideration, we followed a requirement 

driven design process [22] to draft a conceptual approach of a RS in context of PLCM 

as initial design stage, and therefore to answer the second research question. 

4 Findings 

Initially, we performed a market sounding to gain an overview about information 

system support aiming at the support of PLCM in general. Examples of such software 

are SAP Product Lifecycle Costing [20], aPriori Product Cost Management [23], 

Siemens Teamcenter Product Costing [24], and FACTON EPC Suite [25]. While there 

is domain-specific software available on the market in general, industry experts are 

demanding further functionality to improve software-supported cost optimization. Due 

to a lack of specific functionality, participants confirmed that spreadsheet software is 

still being used for a variety of tasks regarding early cost optimization [5]. Therewith, 

we can confirm earlier research results from Schicker et al. in 2008 [7]. 

But before thinking about new approaches on how to improve software support, we 

wanted to understand the circumstances of the optimization environment. On the one 

hand, there exists a huge product complexity. Through our workshop we learned that 

product cost estimations for one product consist of up to 35,000 single items that require 

to be costed and optimized during product development. On the other hand, 

optimization processes are highly dynamic with a variety of coherent as well as contrary 

optimization measures each being manually evaluated and applied under increasing 

time pressures (e.g., to prepare customer quotations). Participants stated that quotations 

in discrete manufacturing industry – containing product cost estimates for upcoming 

decades – in some cases must be prepared in only 2 business days. 

As our workshop practitioners are fully aware of the potential of product-cost 

optimization during the development cycle (Figure 1), we were able to jointly elaborate 

the main objectives to be addressed with future functional approaches to enhance 

information system support for cost optimization [5]: 

1. Reduction of manual effort 

2. An integrative adoption (into existing PLCM software) to avoid data inconsistency 

3. Reduction of costing complexity by centrally accessing optimization measures 
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As a next step for our research it was necessary to identify potential use cases which a 

software-based approach must support. Since experts highlighted the importance of 

accessing optimization measures, we based our use case elaboration on the evaluation 

of applied measures among discrete manufacturing within our second study [21]. The 

result of this study by Walter et al. [21] shows a variety of optimization measures in 

relation to their relevance (scores from 0 to 10) for different branches (Table 1). 

Table 1. Optimization measures being used during product development [21] 

Optimization Measures 

Average Score Std. Dev. 

Overall Automotive 
Machinery 

Construction 
Overall 

Alternative concept and product designs 7.33 7.75 7.50 1.89 

Alternative reference components, 

assemblies, materials, and recipe ingredients 
7.06 7.00 7.00 2.66 

Alternative production plants 7.29 7.82 7.75 2.37 

Alternative production processes and 

production process optimizations 
6.56 7.08 4.50 2.36 

Lot size and cycle-time optimizations 4.88 5.80 1.75 2.74 

Material price optimization 7.78 8.25 7.25 2.10 

Make-or-buy decisions 7.83 7.92 8.25 1.57 

Investments in tools or equipment 5.88 7.73 2.50 3.01 

Optimization of logistics costs 5.61 6.58 4.25 2.69 

5 Conception of a Recommender System for PLCM 

5.1 Transform Optimization Measures into Recommendations 

With the knowledge about optimization measures (Table 1) we were confronted with a 

variety of measures addressing different needs during product development projects 

each requiring a variety of different organizational stakeholders (e.g., purchasers, 

product engineers, process engineers, and logistic experts). Based on the main objective 

to centrally access optimization measures (see Section 4), we identified RS as one 

technique to fit our requirements. In particular, RS provide an easy, intuitive guidance 

for users (see Section 2) in a diversity of information. In parallel, we identified such a 

situation with the need to generalize access within a broad bandwidth of information 

such as 35.000 items to be costed during product development (see Section 4).  

To develop an artifact that could serve as basis for iterative evaluation and 

development, we needed to elaborate an initial design stage for our construction-

oriented research approach. How do we bridge the gap between typical RS-use cases 

and an optimization-use cases as described in Section 4? A simple make-or-buy 

recommendation could be: “Producing assembly X in plant B could lower production 

costs by 50 €”. The search for alternative items or assemblies can be turned into a 

recommendation as well: “In the past, users replaced assembly A by assembly B for 

product Y. For the current product X, this replacement would reduce total costs by  

50 €. Apply recommendation?”. We want to seize common RS functionalities (Section 
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2) to generate recommendations. However, due to the complexity of cost-estimate 

structures, iterating all items within a cost estimate and checking for all available 

optimization measures is not a valid solution. Such an approach would easily lead to 

performance issues, an information overload for the user and, in the worst case, pure 

mathematical optimization problems. Therefore, we rely on existing approaches 

described in Section 2.  

We want to offer global recommendations for the whole product cost estimate based 

on optimizations made in the past (exploit organizational knowledge) by applying CF. 

Context-sensitive recommendations, on the other hand, are triggered on the level of 

single-cost items, and are based on CBF. When the user navigates to a specific cost 

item within the costing estimate, possible optimization measures are validated 

corresponding to its attributes. If possible, the potential financial savings that can be 

achieved by accepting a recommendation should be displayed to enhance the user’s 

ability to make faster decisions on evident recommendations. In such optimization 

recommendations and therefore in the application of RS, we see an opportunity to 

challenge the high time pressure during product development (Section 4). 

5.2 Requirements toward Recommender Systems in PLCM 

In our requirement analysis, we noticed that the application of a RS in the context of 

PLCM relates to domain-specific requirements. At first, we collected universal 

requirements valid for any kind of RS, based on a literature review on evaluation 

criteria and RS properties [8, 26]. The list of requirements addresses quality 

characteristics such as a high prediction accuracy, an item coverage, serendipity, or 

diversity. Furthermore, the knowledge from our findings (Section 4) helped us to 

identify requirements which are particularly relevant for a RS in PLCM. We value the 

following requirements as the most critical ones to continue our construction-oriented 

research approach in the given domain: 

 The process of generating recommendations should be transparent for the user in 

order to increase confidence in the information system support. 

 The system should be capable of learning and thus improving the quality of 

recommendations. 

During the innovation sessions, the experts stated their concerns about the feasibility 

of recommendations made by a system, as they are responsible for providing fully 

traceable and reasonable cost estimates – which can be ruined by calculations based on 

erroneous assumptions [5]. Therefore, it is necessary to enhance the recommendations 

by utilizing detailed information about its accomplishment. Comprehensible 

explanations are a success factor to increase the transparency of the purpose of the 

system as well as users’ satisfaction and their confidence in the system [27]. 

In Section 2, we stated that KB RS can gain specific domain knowledge through user 

interaction to increase recommendation quality. By enabling users to reject 

recommendations, we want to follow this approach. Users should provide additional 

information about the reasons for their decisions. Consider the following example. The 

RS recommends production of an item in plant A instead of plant B. The user knows 
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through his or her expert knowledge that it not possible to produce the item in plant A 

(e.g. because of strategic plant utilization). To retrieve the expert’s knowledge, the 

system proposes a set of possible answers. A conceivable set could be: “It is not 

possible to produce item X in plant A. Please specify the reason for the rejection: [ ] 

strategic plant utilization, [ ] local content restrictions], [ ] other: …”. The system 

transforms the answers into knowledge content so that the newly acquired knowledge 

can steer further recommendation generation processes. 

5.3 Essential Aspects of a Recommender System in PLCM 

Based on the theoretical foundations of RS (Section 2) and the knowledge gained 

during the requirements analysis, we derived a concept of an RS for PLCM. We worked 

out a set of main aspects that needed to be included to provide a basic functionality. 

Besides basic functionality, further aspects were considered to improve the quality of 

the RS. When we had elaborated these aspects, we transformed them into abstract 

software components from which we deducted a high-level architectural concept. 

As declared in previous sections, recommendations made by our system are based 

on relevant product cost-optimization measures (Table 1). These measures are collected 

within a dynamically extended catalogue of optimization measures. We distinguish 

between global recommendations based on CF and context-sensitive recommendations 

based on CBF (Section 4). The CBF recommendations are generated in real time for 

particular items or assemblies that the user is currently working on. Focusing on item 

characteristics and attributes (e.g., production plant, supplier, or product 

characteristics), our system validates possible optimization measures and, in the case 

of success, transforms them into recommendations. Consider the following example. 

While using PLCM software, a product costing expert selects assembly X, which is 

planned to be produced in plant A. By analyzing corresponding data, our system 

validates that assembly X can also be produced in plant B or plant C. As a result, our 

system recommends alternative production plants (if the impact is advantageous). 

Besides those attribute-related CBF approaches, CF is considered for retrieving our 

global optimization recommendations. Due to logging and analyzing the product 

costing expert’s optimization activities, additional recommendations can be derived for 

other experts. For example, when a set of screws is replaced in one product’s cost 

estimate, those screws may also be replaced in another product. To support CF use 

cases, a logging module should be implemented to analyze historical data. Global 

recommendations are shown directly when a user opens a cost estimation structure of 

a product. To do so, the setup of a database for frequently retrieved recommendations 

is essential for our system. 

As companies are, in terms of processes and structures, heterogeneous constructs, 

the need for configurable software is an essential requirement [28]. The quality of RS 

can be increased through utilization of interactive KB RS (Section 2) [13]. Related to 

this interactivity, the systems’ ability to learn is another important aspect. From the 

perspective of a product-costing expert (as of any other user), it is unsatisfactory to get 

a similar set of non-applicable recommendations repeatedly. Hence, a system needs to 

learn by user interaction which recommendations are value-adding and which are  
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not [29]. The demand for such behavior leads to a configurable and teachable system 

based on knowledge-based recommender technologies [8]. Implementing this 

functionality satisfies the need for a system with ongoing learning capability (Section 

4). The use of KB RS in combination with CBF and CF makes our system a hybrid RS 

(Section 2). 

Multiple recommendations can influence each other when they exist at the same time 

[30]. Imagine a certain material is required to produce an assembly and two 

recommendations are made: the first (recommendation A) recommends purchasing the 

item from an external supplier, while the second (recommendation B) recommends the 

production in a different plant. What is the system supposed to do with recommendation 

B, when the user accepts recommendation A, or vice versa? Accepting recommendation 

A does not automatically imply the invalidity or change of relevance of 

recommendation B. Rejecting all other recommendations for the selected item may lead 

to a loss of optimization potential. Therefore, interdependencies between 

recommendations have to be validated and resolved. 

 

5.4 High-level Architecture of a Recommender System in PLCM 

To visualize the concept of an RS that improves PLCM, we deliberated over a 

component-based high-level architecture (Figure 2). Driven by the idea of transforming 

optimization measures into recommendations we elaborated our architecture model by 

translating former deliberated aspects (Section 5.1) into software components. We 

enriched these domain-specific components by RS modules as suggested by Imran et 

al. [31] and synthesized all components into a holistic model. Furthermore, the 

architecture is expanded by user roles including their interaction correlations. 

 

Figure 2. Component-based high-level architecture of a recommender system in PLCM 

The directional arrows in Figure 2 indicate the direction of data access, whereby dashed 

lines indicate not explicit access, but implicit access gained by interpreting the user's 

behavior. Our system is primary managed by the Recommendation Management 

System (RMS). It manages the interaction with the users. The user interface must be 

adaptable for available PLCM software as elaborated in Section 4. We suggest 
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separating the presentation logic and the control logic of the RS to ensure the 

interchangeability of the user interface depending on the underlying PLCM software. 

The independence of the presentation layer can be achieved by following the 

architectural pattern Model-View-Controller (MVC) [32]. The RMS forwards feedback 

retrieved from the user (explicit or implicit) to the Learning Module. This module 

includes a knowledge database and is used to improve recommendation quality through 

KB RS functionalities. One conceivable approach is reinforcement learning, where the 

learning effect is achieved by the repetitive interpretation of positive (applied 

recommendations) or negative (rejected recommendations) feedback [33]. When a 

recommendation, which includes proposed data changes, is accepted, the RMS also 

initiates the application of optimization measures at the Execution Module. The 

database of PLCM software serves as the Item Database, where all cost-estimate items 

are stored. It includes all relevant cost items of any product-cost estimate. The data 

layer should also be separated from the presentation logic and control logic by MVC to 

enable integration into different PLCM tools. Corresponding data updates are initiated 

by the Execution Module over provided interfaces. The RMS requests the 

recommendations, which are shown to the user from the Recommendation Generator 

(RG). The RG generates recommendations based on information from several different 

data sources. Digital representations of available optimization measures are stored in 

the Measures Repository, which can be extended dynamically. The RG transforms 

these measures into recommendations integrating CBF and CF algorithms. 

Furthermore, the RG takes information from the Learning Module in account to 

enhance the recommendation quality. Historical data about optimization activities are 

stored in and retrieved from the Logging Module, which is used to generate global 

recommendations. Corresponding recommendations are continuously updated in the 

Recommendation DB to be available to the user at any time. 

6 Conclusion and Future Work 

Product development is the most important phase to leverage optimization potentials 

and to ensure overall economic success. Therefore, the lack of information system 

support in early product-cost optimization is astonishing, but has been confirmed by a 

variety of business experts from the discrete manufacturing industry. Product-costing 

activities during the market cycle are covered by ERP systems. Main product-costing 

activities within the development cycle are nowadays supported by costing software. 

However, optimization of product costs is still impeded by enormous amounts of data, 

which need to be evaluated under increasing time pressures. Optimization operations 

are indeed applied manually by experts. In this article, we suggest the application of a 

recommender system to supplant manual efforts and improve product-cost 

optimization. This RS generates recommendations relating to optimization measures 

that are relevant for the industry. 

Following a comprehensive analysis of common scientific and domain-specific 

requirements of an RS within PLCM, we identified essential aspects that need to be 

considered for future implementations. Our approach follows the concept of hybrid RS. 

It is a necessarily configurable approach supporting heterogeneous organizations within 
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discrete manufacturing industries. Furthermore, the integration of learning mechanisms 

is indispensable to improving recommendation quality gradually. We transformed these 

aspects into a component-based high-level architecture (Figure 2). Transforming this 

architecture into a recommendation system is addressing major objectives to overcome 

hurdles in today’s product-cost optimization, especially for large cost estimates that are 

required to be optimized within a limited period of time. This concept should not 

replace, but complement the expertise of experts by recommending possibilities to 

further optimize product costs. 

Further research in this area should concentrate on the iterative development of 

artifacts like proof of concepts to evaluate the proposed system concept [34]. What 

could be taken into further consideration is the integration of additional optimization 

dimensions besides costs, such as ecological aspects, risks, and quality. Moreover, 

attention should be paid to sophisticated information presentation for recommendation 

details in order to heighten both the transparency and the traceability of the system to 

the users. 
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